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Abstract
When designing surveys, survey organizations must consider numerous design features that
may have a substantial and differential impact on both data quality and survey costs.
They must recognize that surveys are inherently multipurpose and that a potentially long
list of constraints (e.g., minimum sample sizes for domains) must be satisfied. A typical
approach is to optimize an objective function subject to constraints on costs and quality.
However, as the list of constraints lengthens and the cost and quality structures become more
complex, finding a solution to this optimization problem (i.e., choosing the appropriate set of
design features) while satisfying all of the constraints becomes increasingly challenging. This
paper reviews the methods by which survey designers have attempted to satisfy multiple
constraints while optimizing some function of data quality and survey costs.
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1. Introduction

When designing new or modifying existing surveys, survey organizations must con-
sider many design features that may have a substantial and differential impact on
both data quality and survey costs. Surveys are inherently multipurpose, meaning
that there will be many, both anticipated and unanticipated, uses of the collected
data. These uses can range from producing estimates of characteristics of the sur-
vey’s target population to policymakers using the collected data to make policy
decisions that may affect many of their constituents. For each distinct use, there
are usually specific requirements, or constraints, that must be satisfied so that the
data user can have some confidence that the data collected are sufficient for their
purpose. As the number of data users increases, the list of constraints that needs
to be satisfied may also lengthen. Satisfying the needs of every data user can be
challenging because as the number of constraints increases, then finding a solution
to this optimization problem becomes increasingly complex. Furthermore, a wide
range of additional constraints arise from budgetary and operational considerations.

The purpose of this paper is to review the issues encountered during survey
design, identify how survey designers and researchers have addressed these issues,
and offer suggestions for extensions of the topics discussed. This review is divided
into the following sections. Section 2 provides background information on survey
design, by defining key concepts that will be useful to bear in mind throughout this
review. Section 3 identifies an effort within the Bureau of Labor Statistics (BLS)
motivating this review. Section 4 outlines the basic approach to optimization as it
applies to simple survey design problems. Section 5 provides a general optimality
framework that may be helpful when exploring issues and trade-offs related to survey
design. Section 6 highlights extensions of the basic approach to optimization to
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problems specific to multipurpose, or multiobjective, surveys. Finally, the paper
concludes with a discussion and characterization of the trade-offs that often arise
during survey design.

2. Survey Design

This section provides background information on survey design. In particular we
identify some purposes of surveys, offer a formal definition of survey design, discuss
areas of potential conflict that may arise when designing surveys, and highlight
what is meant by optimal survey design.

It is important to identify the purposes of a specific survey in advance of elect-
ing particular design options. By identifying the purposes of a survey and perhaps
prioritizing them, the survey designer can make more informed design decisions
about how best to satisfy those objectives. Kish (1988) offers an extensive review of
multipurpose sample designs. In his review he provides a hierarchy of six primary
purposes of surveys. They are: (1) calculation of diverse statistics; (2) character-
ization of diverse statistics; (3) collection of multiple variables; (4) multi-subject
surveys; (5) continuation of survey operations; and (6) master frames.

There are two points worth mentioning about this list. First, it contains a very
diverse set of purposes. Various types of researchers often use surveys to characterize
or describe certain populations (related to purposes 1 and 2 above), but they forget
that surveys serve a plethora of other purposes. One such purpose is to provide
inputs for the development of sampling frames for subsequent surveys (purpose
6 above). The second comment is that practically every survey will attempt to
satisfy multiple purposes on this list. In other words, there is overlap among the
items on the list. Furthermore, even within a particular purpose, there is a range
of possible objectives. For instance, calculation of diverse statistics may not only
refer to calculating means or totals but also to computing analytic statistics such
as regression coefficients. An added complication is that calculating each type
of statistic may require a different set of conditions. The ultimate implication
here is that surveys are inherently multipurpose. So, when designing a survey,
consideration must be given to the multipurpose nature of the survey.

Given that the purposes of a survey have been identified, the next issue that
survey designers must consider is how to construct, or design, a survey to satisfy
each purpose. This, however, requires a precise definition of survey design. Kish
(1965, Chapter 1) provides a definition of survey design that encompasses a broad
range of components, but this actually speaks to the diversity of survey purposes.
His definition has two key aspects, which he calls survey objectives and sample
design. By survey objectives he means the definition of survey variables, methods
of observation, methods of analysis, utilization of results, and desired precision. He
refers to the sample design as containing two processes – selection of sample units
and estimation from the sample units. It is important to recognize that these two
key aspects are not independent of each other. In other words, survey design is a
two-way process. In some sense, the survey objectives should determine the sample
design, but often sample design issues influence the survey objectives. Thus, it is
necessary to have a dialogue among subject matter experts, statisticians, end-users,
and anyone else who has knowledge in either the survey objectives or sample design
of a particular survey.

When designing a survey to meet some combination of the purposes listed above,
conflicts may arise because it is challenging to satisfy every purpose. Kish (1988)
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identifies ten areas of conflict that may arise when designing multipurpose surveys.
They are: (1) sample sizes; (2) relation of biases to sampling errors; (3) alloca-
tion of sample among domains; (4) allocation of sample among strata; (5) choice
of stratification variables; (6) cluster sizes; (7) measures of size for clusters; (8) re-
taining sample units; (9) design over time; and, (10) sampling errors. Fortunately
not every potential conflict needs to be considered when designing a survey because
some conflicts are tied only to one purpose. However, Kish recommends that key
considerations should always be given to sample size issues and issues regarding
bias ratios because those conflicts tend to be ubiquitous. As a final note, it may
appear that these conflicts only pertain to sample design issues, but they are in fact
related to the survey objectives. For instance, there may be a particular population
subgroup, or domain, that a researcher is interested in describing, so a potential
conflict may arise when determining how to obtain information on members of that
subgroup given the distribution of its members among various strata.

The ultimate goal in survey design should be to choose the best or optimal design
to meet the primary purposes of the survey. For the purposes of this discussion,
optimal means choosing the best element from some set of available alternatives.
In survey design, there are two perspectives on what is meant by optimal. The
first is an “ideal” notion of optimum. This notion refers to the scenario of operating
under an unconstrained system. As a simple example, survey research suggests that
nonresponse rates tend to be lower with personal visit surveys than they are with
either mail or telephone surveys. However, personal visit interviews are generally
more expensive than telephone interviews (Groves, et al., 2004, Chapter 5). So, if
the survey organization was unconstrained by budgets and if it wanted to optimize,
or maximize, the response rate, then it should choose to administer a personal visit
survey. Often, however, surveys must operate under constraints, and in particular
monetary constraints. In practice, survey design must balance a wide range of
factors and there is usually only a finite set of resources with which to conduct
a survey. Thus, there is a second notion of optimum which is referred to as a
“practical” optimum. This notion of optimum can be thought of as the one that is
achieved after specifying certain constraints and conditions on the system.

3. Motivating Application

The impetus for this review is the redesign of the U.S. Consumer Expenditure (CE)
Survey. The CE Survey program consists of two surveys, a quarterly personal visit
interview survey and a two-week diary. These two surveys combined provide in-
formation on the buying habits of American consumers, including data on their
expenditures, income, and household characteristics. The survey data are collected
for the BLS by the U.S. Census Bureau and provide the basis for revising the weights
and associated pricing samples for the Consumer Price Index (CPI), one of the na-
tion’s leading economic indicators (BLS Handbook of Methods, 2007). With the
current surveys, however, there is concern over underreporting of expenditures, de-
clining participation rates, and high respondent burden. To address these concerns
an effort, known as the Gemini project, is underway to redesign the CE Survey
program. The aim of the project is to provide a detailed road map for a redesigned
survey program that will address these concerns and improve data quality.

With a redesign imminent, there is ongoing research about potential ways to
modify the surveys. One potential set of methods that is currently being explored
is split questionnaire methods (Gonzalez and Eltinge, 2007; 2008; 2009). Briefly
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defined, split questionnaire methods involve dividing a survey into subsets of ques-
tions and administering each of those subsets to subsets of a full, initial sample.
The idea is that by reducing respondent burden, if burden is viewed as number of
questions asked to a particular respondent, then data quality may improve because
the survey will be less burdensome and a less burdened respondent may be more
motivated to provide more accurate responses (Gonzalez and Eltinge, 2007).

It is worth clarifying that split questionnaire methods or adaptations of them are
only one of the many potential ways that the CE Survey program is considering dur-
ing the redesign effort. In fact, other potential methods currently being investigated
are the use of global questions, altering the recall period, and changing the interview
structure (http://www.bls.gov/cex/geminiproject.htm). Regardless of the way the
CE survey program is redesigned, it is essential to have a framework for studying
the extent to which a particular redesign option is optimal. This framework will
enable the CE Survey program to determine whether the redesign option maximizes
some function of quality or other important characteristic. Therefore, one of the
goals of this review is to begin developing that framework. Specific details on the
proposed framework can be found in Section 5.

4. Review of Basic Approach to Optimization

Expressing a survey design problem in mathematical notation is the key to select-
ing a particular design with specified properties. This is because explicit formulas
representing primary survey purposes can easily be optimized subject to constraints
and/or requirements of data users. There are four primary components of an op-
timization problem as it pertains to survey design. They are: (1) the objective
function; (2) decision variables; (3) parameters; and (4) constraints. In this section,
we provide both definitions and examples of each component. It is important to
bear in mind that the listing of examples is by no means exhaustive.

The first component of an optimization problem is the objective function. The
objective function is a function of one or more variables to be optimized. We can
think of optimization in terms of maximization or minimization. In simple prob-
lems, examples of an objective function include the theoretical sampling variance of
a prespecified estimator of a population quantity of interest. Below we have exam-
ples of two standard sampling variance formulas for, respectively, stratified random
sampling and stratified unequal-probability sampling:
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N2
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h

Nh(Nh − nh)
S2
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nh
(1)
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π

)
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(
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)]
(yhik − Ȳk)2 (2)

The above formulas can be extended in many ways. For instance, one can derive
formulae that account for multivariate y-vectors (to account for several character-
istics of interest), multiple stages and/or phases of sampling (equation [2] can be
used for two phases of sampling), and different estimators (such as estimators for
totals and regression coefficients).

The second component of an optimization problem is the set of decision vari-
ables. These are the quantities that are adjusted in order to find a solution to the
optimization problem. Essentially, these serve as the primary outputs, or what the
survey designer is most interested in. Examples of decision variables may include
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full or stratum-specific sample sizes, denoted by n and nh, respectively, first-order
inclusion probabilities, πi, and subsampling probabilities for two-phase designs, phi.

The next component of the problem is a set of fixed inputs that are treated
as constants. These are known as the parameters. Examples of parameters can
be identified using the objective function examples given above. For instance, in
equation (1) we have population stratum variances and stratum-specific population
sizes, denoted by S2

h and Nh, respectively. Examples from equation (2) include pop-
ulation size, N , and values of specific variables on population units, yhik. Another
important example of parameters not contained in either equation are cost compo-
nents. These include the cost of observing a specific unit in a particular stratum.
These can be denoted as ch.

The final component is the set of constraints. These are the restrictions on the
decision variables or combinations of them. Examples of constraints may include
specifying interviewer workloads, specifically assigning a certain number of cases
to each interviewer. Another constraint may be to observe a minimum number of
sample units in a particular stratum or domain. Equation (3) displays this specific
constraint.

nh ≥ nmin (3)

As mentioned earlier, survey operations are often constrained by budgets, so another
example of a constraint is a cost constraint. Equation (4) identifies a simple linear
cost constraint in which the overall survey cost, denoted by C, is composed of a
fixed cost component, C0, as well as a variable component that depends on the
number of observations made in each stratum, per Cochran (1977, Chapter 5).

C = C0 +
∑

h

chnh (4)

We now illustrate the basic approach to optimization using some of the specific
examples above. A simple variance-cost optimization is as follows: we would like
to determine the set of stratum sample sizes {nh} that minimize (1) subject to
the constraint identified in (4). Using either an application of the Cauchy-Schwarz
inequality (Cochran, 1977, Chapter 5) or Lagrange multipliers (Varberg and Purcell,
1997, Section 15.9), one can easily find that the solution is:

nh = n
NhSh/

√
ch∑

hNhSh/
√
ch

(5)

In other words, the set of {nh} identified in (5) will minimize (1) subject to (4). The
implication of allocating sample based on (5) is that we sample more from strata
that are heterogeneous (have large Sh) and less from strata that are expensive (have
high ch).

The above problem and more complex problems, such as those for multipurpose
surveys, can be expressed in general mathematical terms. For example, if we let
f : <d → < denote the objective function and X ⊆ <d, then we wish to find some
element of X, namely x, that maximizes f . We should mention that X is the space
of design decisions and d is the dimension of the decision variables vector. In the
simple variance-cost optimization problem given above, d is equal to the number of
strata.

It is worth noting that these general mathematical terms can also be extended
in various ways. For instance, note that the function f is a mapping from <d to <.
This means that when evaluated f takes on a scalar quantity and design decisions
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are made according to higher (or lower) univariate values. There may be situations
when reducing the objective function evaluation to a scalar quantity is problematic;
thus, we can represent the optimization problem even more generally by relaxing
this requirement.

Although not identified as a main component, the method used to find the op-
timum is a critical element of the optimization problem. As demonstrated by the
example above, simple problems can usually be solved using Lagrange multipliers or
applications of the Cauchy-Schwarz inequality (Cochran, 1977, Chapter 5). How-
ever, for more complex situations (e.g., multipurpose surveys) more sophisticated
techniques are usually needed. Mathematical programming methods, are useful for
solving these complex problems. One specific example can be found in Leaver, et
al. (1996). The authors used nonlinear programming techniques to determine the
optimal allocation of data collection resources that would minimize the sampling
variance of price change, subject to various budgetary and operational constraints.
Their research provided an explicit example of a very complex optimization prob-
lem that was solved with the assistance of computers. However, the key to using
computational power to solve this problem and others like it is providing accurate
inputs into the appropriate interface.

5. General Optimality Framework

While the basic approach to optimization is helpful when setting up survey design
problems for computational exercises, a more general optimality framework is useful
for exploring issues related to optimal survey design. Specifically, the framework
helps survey designers understand the relationships among design decisions, survey
data quality, and the utility of statistical products (e.g., official estimates of means,
totals, or other quantities) from the collected survey data. This framework is also
helpful when exploring general cost and quality trade-offs related to survey pro-
grams and their stakeholders. For the purposes of this discussion, a stakeholder is
essentially any entity (e.g., person or organization) with a vested interest in the sur-
vey program and/or any products subsequently produced from the collected survey
data. Specific examples of stakeholders are policymakers and academic researchers.

Key components of this framework can be extracted and adapted from various
references on optimal design and statistical decision theory (Fedorov, 1972; Silvey,
1980; Berger, 1980). To develop this optimality framework, we provide the following
notation. First, let D be the decision, or design, space; D denote the selected design
feature (e.g., random mechanism for sampling); and, d be the realization of the
specific design feature (e.g., sample). In addition, let Q be the optimality criterion
(e.g., mean squared error of a survey statistic or one of the six dimensions of data
quality outlined in Brackstone [1999]) and U be a utility function representing a
stakeholder’s relative satisfaction with the design.

We also identify X as a vector of observable auxiliary information. For the cur-
rent discussion, we partition X = (XR, XB, XC) where XR is a set of resources with
which to conduct a survey (e.g., existing survey organization infrastructure, inter-
viewing staff); XB are the bounds or constraints (e.g., on data collection budgets);
and, XC is the cost structure (e.g., per unit interview costs). We also allow for the
possibility of other factors that are neither observable nor directly controllable in
real-time and we denote this vector as Z. An example of this may be changes to
the underlying survey environment. A specific example relevant to the CE survey
program is that of new products (e.g., iPads or Amazon Kindles). Expenditure
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information about new products is difficult, if not impossible, to obtain after survey
design decisions have been made and resources have been allocated. Thus, these
types of changes in the underlying survey environment will have an impact on the
optimality criteria and subsequent measure of utility for each stakeholder. As a
final note, auxiliary information in both X and Z can either be fixed or random
and known or unknown throughout the entire survey process. For example, survey
organizations may experience interviewer turnover during data collection or per unit
interview costs may increase due to extreme changes in gasoline prices.

Using the above notation, the optimality criterion, Q, can be expressed as the
following function.

Q = Q(D,X,Z, γ) (6)

Note that in equation (6) we also have a vector of parameters, denoted by γ. This
vector contains parameters that are unknown and may have an impact on the op-
timality criterion. Specific examples of these may include superpopulation model
parameters or design effect parameters associated with the class D of designs.

Finally, we express the stakeholder’s utility function, equation (7), where β is
a vector of parameters representing underlying perceptions of needs of individual
stakeholders.

U = U(Q, β) (7)

Given this representation of a stakeholder’s utility, it is clear that for the same opti-
mality criteria, individual stakeholders’ perception of value, or utility, may still vary
across stakeholder, due to differences in β. Said differently, while survey designers
may make design decisions using one criteriom (e.g., mean squared error of a par-
ticular statistic), the value of the survey design may be high for one stakeholder,
but quite low for another because that stakeholder has relatively low interest in the
particular statistic. For example, some stakeholders’ perception of data utility will
depend heavily on timeliness, while for others timeliness may be much less impor-
tant than item-level missingess rates. In addition, if groups of stakeholders with
relatively similar utility functions are identified, then using a relevant optimality
criterion for those groups, may yield a survey design with greater utility for more
stakeholders. Thus, having a clear understanding of various stakeholders’ utility
functions is an important component of the survey design process because this is
ultimately related to choosing an appropriate objective function to optimize.

6. Extensions of Basic Approach to Optimization

Now that we have provided both a foundation for solving survey optimization prob-
lems in simple settings and a general optimality framework for discussing issues
often encountered in survey design, in this section, we identify ways that survey
designers have extended the basic approach to optimization. Specifically, we first
identify extensions to applications involving multiple estimands and multiple utility
functions. Second, we provide an alternate perspective on survey design and iden-
tify specific problems within this perspective that have warranted consideration of
optimization methods.

6.1 Multiple Estimands and Multiple Utility Functions

In the example provided in Section 4, we determined the sample allocation among
strata based on estimating one unknown population parameter, ȳk. It is worth not-
ing, however, that univariate methods are not necessarily optimal when designing
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multivariate surveys, or surveys in which there are multiple estimands of interest.
For example, strata for stratified sampling are often formed based on known aux-
iliary information, say H, that is thought to be correlated with the key survey
variables. Estimators based on these key survey variables would likely be very ef-
ficient due to their high correlation with H. If, however, there are other survey
variables of interest that are only weakly correlated with H then stratified sampling
based on strata formed by H might not be as efficient for these variables. So, several
authors have developed methods and provided criteria for deciding among sample
design alternatives for multipurpose, or multivariate, surveys.

Many of the methods that survey designers and statisticians have proposed effec-
tively amount to reducing the evaluated objective function (e.g., sampling variances
or coefficients of variation) of several key survey variables to a scalar quantity. For
instance, Holmberg (2002) identified three criteria that can be used in multivari-
ate surveys: (1) sum of the variances of estimators under consideration; (2) sum
of squared coefficients of variation of those estimators; and, (3) sum of relative
losses of efficiency. In addition Kozak (2006) presents and compares five sample
allocation methods (one of which is proportional allocation – to serve as a base-
line for comparison to the other methods) that could be useful when designing and
planning multiparameter surveys. Details on the specific methods being compared
can be found in the article. In this simulation study, each method that took into
account the multivariate nature of the data outperformed proportional allocation.
It is worth noting that proportional allocation does not take into account any of
the characteristics of the population other than the population size of each stra-
tum. The primary conclusion of this research was that when choosing an allocation
method for a multiparameter survey, survey designers should choose the method
that takes into account the multivariate structure of the data being collected.

The criteria reviewed in the previous paragraph may also be modified by assign-
ing importance weights to certain parameters or characteristics of interest (Kish,
1988; Kozak, 2006). For multipurpose surveys, one purpose might be deemed more
important than another, so a higher weight can be assigned to that purpose. The
the entire set of weights {wk} can then be incorporated into the objective function.
As an example of how importance weights can be assigned, consider the following.
Suppose we wanted to find the set of stratum sample sizes {nh} to minimize an
objective function that is equal to the sum of variances of the K means of interest.
This is given by equation (8).

Φ0 =
K∑

k=1

var(ˆ̄yk) (8)

If some of the means are of more interest than the others, then we can assign higher
weights to the variances of those means. So, the objective function can be modified
by including a set of weights {wk} in the following way and optimization of Φ1 can
occur in the standard way.

Φ1 =
K∑

k=1

wkvar(ˆ̄yk). (9)

Day (2009) also investigated the problem of allocating sample among strata
when there are multiple parameters of interest. One of the main differences be-
tween this and prior research is that previous studies have assumed that the strata
were fixed in advance of determining the sample allocation to each stratum. One
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reason that a survey designer might not want to fix stratum boundaries in advance
of allocating sample is that there may be characteristics of interest that are only
weakly correlated with the stratification variable. So, stratified sampling for those
characteristics would not be as efficient as it would be if the correlation was higher.
Day discussed the use of evolutionary algorithms, a type of metaheuristic algorithm,
for the situation of simultaneously determining stratum boundaries and sample al-
location among strata. Briefly defined, metaheuristic algorithms are computational
techniques that solve the optimization problem iteratively by searching and com-
paring candidate solutions across some measure of quality or an evaluated objective
function. The idea here would be to actively search the space of possible solutions
instead of evaluating derivatives to find the extremum of the objective function.
In particular, though, evolutionary algorithms employ a biological evolution model
for computing. Specific details on these biological models can be found in various
references on evolutionary computation (De Jong, 2006).

According to Day (2009), one of the advantages of using an evolutionary algo-
rithm is that a smaller sample size may be used to reach coefficient of variation
targets when stratum boundaries and allocations are simultaneously adjusted. His
research provides justification that survey design issues can be addressed using these
computational techniques, however, further research is needed to understand how
to adapt these algorithms to individual problems. In fact, the author lists some
areas for future study, e.g., methods for sampling from various distributions. It is
worth mentioning that a potential drawback of these methods is that the algorithms
have to be tailored to individual problems. The possible lack of generality of these
algorithms to a large class of design problems may make survey designers opt for
more standard techniques. If, however, an evolutionary algorithm is used, to the
extent possible, the resulting outputs should be compared against existing, or more
universally accepted, methods using simulations and sensitivity analyses.

Even though sophisticated computational techniques are available to solve mul-
tivariate design problems, it may still be desirable to opt for a more simplistic
approach. Rahim and Jocelyn (1994) proposed an aggregate measure of the vari-
abilities of all estimates in terms of a distance function of the coefficients of variation.
They advocate for this approach because when survey cost is preassigned, having
too many individual variance constraints might result in a survey design that ex-
ceeds budgetary constraints. When compared to convex programming methods,
they concluded that as long as the aggregate measure of variabilities did not exceed
its preassigned limit, then there was little point in being overly concerned that each
variance constraint was satisfied since their method performs well against convex
programming. So, they conclude that taking this approach is promising not only
for its simplicity and potential to lower survey costs, but also because there are few
violations of the individual sampling variance constraints.

6.2 Unconditional and Conditional Approaches to Sample Selection and
Assignment of Collection Methods

Taking a different perspective, one can view optimal design as a process of determin-
ing the best “treatment”to administer to each sample member. For the purposes
of this discussion, treatment is taken to be very general with examples including,
but not limited to, more intensive follow-up/callback procedures for initial nonre-
spondents, mode of data collection or enumeration, and incentives. Furthermore, a
few broad classes of survey techniques where optimization methods might be use-
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ful and applicable are responsive designs (Heeringa and Groves, 2004; Groves and
Heeringa, 2006), multiphase designs (Sarndal, et al., 1992, Chapter 9), and parti-
tioned, or split questionnaire, designs (Raghunathan and Grizzle, 1995; Gonzalez
and Eltinge, 2007; 2008).

An early example of optimization methods being considered to determine treat-
ment assignment to sample members can be found in Wolter (1978). He examines
the question of how the entire sample should be optimally allocated to various modes
knowing in advance that each mode has different error distributions and cost prop-
erties (e.g., per unit costs). In addition, he proposes a composite estimation method
to account for sample members being enumerated by a different mode. This method
is effectively a weighted sum of the estimates based on data collected according to
each mode. His work provides a rationale for assigning different treatments to sam-
ple members and a solution for combining the different enumeration methods, but
use of these methods requires good prior information about the measurement error
distributions and the per unit costs for enumerating using each mode.

Specific treatments to administer to sample members and broad classes of sur-
vey techniques can be considered in tandem when exploring optimization methods.
For instance, responsive design methods may involve assigning treatments to re-
spondents during the course of data collection. Briefly defined, the term responsive
design (Heeringa and Groves, 2004) is used to describe the act of making mid-course
decisions and survey design changes based on accumulating process and survey data.
Decisions are meant to improve the error properties of the resulting statistics. Al-
though their formal definition of responsive design has five components, the one
regarding the decision rule, in which the survey operator actively changes the sur-
vey design features in subsequent phases (based on information collected in previous
phases), might benefit most from the consideration of optimization methods.

One example of treatments and responsive design methods being considered
jointly can be found in Gonzalez and Eltinge (2008). They discuss an adaptive, or
responsive, assignment of split questionnaires to sample members participating in a
panel survey. In their study, the “treatment” of interest was a split questionnaire,
i.e., a shortened version of the original questionnaire. Furthermore, it was adaptive
because determination of which split questionnaire to administer to a respondent
was based on information collected in the initial interview. Their evaluation of
various allocation methods of the split questionnaires to sample members primarily
involved criteria that are frequently used in the optimal experimental design lit-
erature. These included the following variance-minimizing criteria – A-optimality
and D-optimality (Silvey, 1980). Using these two criteria is equivalent to using the
smallest trace and smallest determinant of the covariance matrices, respectively. It
is worth mentioning that for a covariance matrix, the trace is equal to the sum of
variances and the determinant is equal to the generalized variance. Details on which
allocation method was deemed superior by the authors can be found in the article.
The primary conclusion, however, to draw from their research is that “treatment”
assignment, responsive design techniques (and perhaps, more generally, other broad
classes of survey techniques), and optimal design criteria can all be used simultane-
ously to address various issues in survey design.

Another example can be found in Elliot et al. (2000). They discuss optimal
design procedures for subsampling of callbacks to improve survey efficiency. The
broad class of survey techniques that is applicable to their research can include
either multiphase designs or responsive designs due to the subsampling and multiple
phases of data collection. Primarily motivated by cost savings, the authors examined
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whether efficiency of data collection could be increased by subsampling a random
proportion of the initial sample from a prespecified callback. In this application
the “treatment” would be whether or not the sample unit was “called back.” Their
analysis suggests that randomly dropping a subset of sample units to call back can
save resources whenever (1) the per callback or per interview cost is increasing, or (2)
the probability of a successful interview attempt is decreasing. They caution that
increased variance of the variable of interest among late callbacks or late relative
between-callback stratum variability reduces the effectiveness of subsampling.

Additional research endeavors involving “treatment” assignment can be found
in Demnati, et al. (2007) and O’Malley and Zaslavsky (2007). The first discusses
the allocation of sample drawn from multiple frames while the second focuses on
nonrespondent subsampling for follow-up.

7. Discussion

As previously noted, survey design will require trade-off decisions regarding the
cost and quality properties of the survey. This is because as the number of purposes
increases and/or the list of constraints lengthens, then finding an optimal solution to
meet every purpose while satisfying each constraint becomes increasingly complex.
To deal with this situation, one approach might be to eliminate one (or more)
purpose(s) and then solve the problem. However, ignoring certain purposes can
result in substantial losses of efficiency for that purpose and sometimes that loss can
be more than anticipated. The same can be said for constraints. Having an overly
constrained system may make finding a feasible solution incredibly challenging, but
reducing the number of constraints might actually affect whether or not a particular
purpose of the survey is met. Similar complications may arise if we choose designs
that depart slightly from the optimum. So, before finalizing a design one should
examine the impact of ignoring certain purposes, relaxing or reducing constraints,
and choosing designs that deviate slightly from optimal via simulation studies and
sensitivity analyses. As an example, Shimizu and Cai (2008) conducted research
on the potential impact of using particular sample allocations when investigating
alternative sample designs for a redesigned 2010 National Hospital Discharge Survey.
They conducted various simulations to compare (on the basis of relative standard
errors) sample allocations to strata for samples of different sizes that were optimized
using either Neyman allocation of nonlinear programming.

There are two additional topics that warrant discussion. The first is data qual-
ity. In the simple example presented in Section 4, we illustrated the following
optimization problem: the theoretical stratified sampling variance of the popula-
tion estimator for the mean was minimized subject to constraints on survey costs.
An implicit assumption of using the sampling variance of one population estimator
as the objective function is that we are only focused on one aspect of data quality,
namely sampling error. It is important to recognize that are other components of
data quality.

There are essentially two paradigms for data quality. The first is referred to as
the Total Survey Error (TSE) paradigm (Groves, et al., 2004) and the second is
known as the Total Quality Management (TQM) paradigm (Biemer and Lyberg,
2003). The former focuses on how at every stage of the survey process both sys-
tematic and variable errors can arise. The primary focus of this paradigm tends
to be the accuracy of the survey estimates and consists of the following errors
or error sources: coverage, sampling, nonresponse, measurement, processing, and

Section on Survey Research Methods – JSM 2010



post-survey adjustment error and construct validity. On the other hand, the TQM
perspective on data quality includes accuracy, and all types of errors, as a single
dimension of data quality, but also incorporates dimensions relevant to a data user’s
perspective namely, relevance, timeliness, coherence, interpretability, and accessi-
bility (Brackstone, 1999). The main point is that it might be worth incorporating
additional ideas from these two perspectives on data quality into various compo-
nents of the optimization problem.

The final point deals with the inputs, or set of parameters, into the optimization
problem. These parameters will directly affect the outcome of the survey design;
thus, it is important to obtain good prior information that can be used as inputs
into the optimization problem. Cochran (1977, Chapter 4) identifies four ways in
which a survey designer can obtain prior information necessary for the design. They
are: (1) taking a smaller random sample from the population and estimating the
desired quantities; (2) the results of a pilot study; (3) previous administrations of
the survey to the same or similar population; and, (4) guesswork about the structure
of the population, aided by mathematical models. One source of prior information
that is absent from this list is data users. Often, data users’ have a wealth of
information which may provide survey designers with additional insight into the
survey optimization problem. Not only may the data users be able to provide values
to the parameters, but they may also be able to offer suggestions for evaluative
criteria to be used in the objective function and suggest constraints that are needed
on the survey system. Therefore, whatever form the survey optimization problem
has, it is imperative to acknowledge that survey data users are key components of
the problem as well.
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